New primitive t-nomials (t = 3, 5) over GF(2) whose degree is a Mersenne exponent

نویسندگان

  • Toshihiro Kumada
  • Hannes Leeb
  • Yoshiharu Kurita
  • Makoto Matsumoto
چکیده

All primitive trinomials over GF (2) with degree 859433 (which is the 33rd Mersenne exponent) are presented. They are X859433 +X288477 + 1 and its reciprocal. Also two examples of primitive pentanomials over GF (2) with degree 86243 (which is the 28th Mersenne exponent) are presented. The sieve used is briefly described.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twelve New Primitive Binary Trinomials

We exhibit twelve new primitive trinomials over GF(2) of record degrees 42 643 801, 43 112 609, and 74 207 281. In addition we report the first Mersenne exponent not ruled out by Swan’s theorem [10] — namely 57 885 161 — for which none primitive trinomial exists. This completes the search for the currently known Mersenne prime exponents. Primitive trinomials of degree up to 32 582 657 were repo...

متن کامل

Íòòòóöñ Êêòòóñ Aeùñö Òòööøóö× Òò Èööññøøú Ìööòóñññð×

Generators and Primitive Trinomials Ri hard P. Brent Computing Laboratory University of Oxford rpb omlab.ox.a .uk 1 May 2001 To be presented at OUCL, 1 May 2001. Copyright 2001, R. P. Brent. oxford3t Abstra t In this talk, whi h des ribes joint work with Samuli Larvala and Paul Zimmermann, we onsider the problem of testing trinomials over GF(2) for irredu ibility or primitivity. In parti ular, ...

متن کامل

Ten new primitive binary trinomials

We exhibit ten new primitive trinomials over GF(2) of record degrees 24 036 583, 25 964 951, 30 402 457, and 32 582 657. This completes the search for the currently known Mersenne prime exponents. Primitive trinomials of degree up to 6 972 593 were previously known [4]. We have completed a search for all known Mersenne prime exponents [7]. Ten new primitive trinomials were found. Our results ar...

متن کامل

A Multi-level Blocking Distinct Degree Factorization Algorithm

We give a new algorithm for performing the distinct-degree factorization of a polynomial P (x) over GF(2), using a multi-level blocking strategy. The coarsest level of blocking replaces GCD computations by multiplications, as suggested by Pollard (1975), von zur Gathen and Shoup (1992), and others. The novelty of our approach is that a finer level of blocking replaces multiplications by squarin...

متن کامل

A fast algorithm for testing reducibility of trinomials mod~2 and some new primitive trinomials of degree 3021377

The standard algorithm for testing reducibility of a trinomial of prime degree r over GF(2) requires 2r + O(1) bits of memory. We describe a new algorithm which requires only 3r/2+O(1) bits of memory and significantly fewer memory references and bit-operations than the standard algorithm. If 2r − 1 is a Mersenne prime, then an irreducible trinomial of degree r is necessarily primitive. We give ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2000